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In multivariate statistical analysis, several authors have studied the total positi-
vity properties of the generalized (0F1) hypergeometric function of two real
symmetric matrix arguments. In this paper, we make use of zonal polynomial
expansions to obtain a new proof of a result that these 0F1 functions fail to
satisfy certain pairwise total positivity properties; this proof extends both to
arbitrary generalized ( rFs) functions of two matrix arguments and to the gener-
alized hypergeometric functions of Hermitian matrix arguments. In the case of
the generalized hypergeometric functions of two Hermitian matrix arguments,
we prove that these functions satisfy certain modified pairwise TP2 properties;
the proofs of these results are based on Sylvester’s formula for compound
determinants and the condensation formula of C. L. Dodgson [Lewis Carroll]
(1866).

KEY WORDS: Compound determinant; condensation formula; FKG inequal-
ity; likelihood ratio test statistics; monotone power function; random matrix;
total positivity; noncentral Wishart distribution; zonal polynomial.

1. INTRODUCTION

Suppose that X1,..., Xn ¥ Rp are mutually independent, normally distrib-
uted (i.e., Gaussian), column random vectors, with common positive-defi-
nite (symmetric) covariance matrix S. Form the p×n random matrix
X=[X1,..., Xn] having columns X1,..., Xn, and let m=E(X), the expecta-
tion of X. We assume throughout that n \ p, so that the random matrix
XXŒ is positive-definite almost surely. It is well-known that XXŒ has a non-
central Wishart distribution with n degrees of freedom and noncentral matrix



parameter mmŒS−1; cf. James (1964), Muirhead (1982). Let l1,..., lp denote
the eigenvalues of XXŒ and set L=diag(l1,..., lp). Further, let l1,..., lp
denote the eigenvalues of the noncentral matrix parameter mmŒS−1, and set
L=diag(l1,..., lp).

In statistical inference about the mean matrix m, it is of interest to test
the null hypothesis H0: m=0 against the alternative hypothesis H1: m ] 0.
Classical statistical test procedures for testing H0 are based on the eigen-
values l1,..., lp, and usually are of the form h(l1,..., lp) where the real-valued
function h satisfies various invariance properties. We refer to Muirhead
(1982) and Anderson (2003) for extensive accounts of these hypothesis
testing problems.

In general, a viable test statistic is required to satisfy various proba-
bilistic properties. In particular, it is important that a test statistic have
monotone power function. In basic terms, the monotone power function
property necessitates that, as the null hypothesis becomes increasingly
implausible, the test statistic under consideration be increasingly able to
detect this rising implausibility.

As a consequence of results of James (1964), it is well-known that f,
the probability density function of the random matrix L, can be expressed
in the form

f(L)=f0(L) f1(L) f(L, L) (1.1)

where f0 is the probability density function of the eigenvalues of a central
Wishart random matrix (Muirhead, 1982), f1 is a ‘‘nuisance function’’
which plays no role in the subsequent analysis, and the function f(L, L) is
expressible in terms of a generalized hypergeometric function (0F1) of two
matrix arguments; cf. Perlman and Olkin (1980), Eq. (3.1).

In a study of the monotonicity properties of some likelihood ratio test
statistics, Perlman and Olkin (1980) established a remarkable connection
with the theory of total positivity. Perlman and Olkin (1980) proved that if
the function f(L, L) satisfied certain total positivity properties then the
power function of the underlying test statistic has some desirable monoto-
nicity properties.

In investigating the statistical inference problem about m, Perlman and
Olkin (1980) raised the question of whether or not the function f(L, L) is
totally positive of order 2 (TP2) in each pair (li, lj), 1 [ i ] j [ p and in each
pair (li, lj), 1 [ i, j [ p. Groeneboom and Truax (2002) subsequently
proved that the function f does not satisfy these pairwise TP2 conditions;
however, they also proved that f satisfies a weaker class of TP2 criteria and
they deduced the corresponding statistical implications of their result.

The purpose of the present paper is two-fold. First, we provide an
alternative proof of the result of Groeneboom and Truax (2002) concerning
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the failure of the function f to satisfy the full class of pairwise TP2 condi-
tions. In prior work on these problems, the basic approach was to study
the function f(L, L) through an integral representation of the generalized
hypergeometric function 0F1, an approach which seems difficult to extend
to more general generalized hypergeometric functions of matrix argument.
On the other hand, the approach given here is based on expansions of the
hypergeometric functions in series of zonal polynomials, a method which
will be seen to apply readily to any generalized hypergeometric function of
matrix argument. These results are given in Section 2.

The second purpose of the present paper relates to the results of
Bondar (1988). As noted above, the function f(L, L) is known not to
satisfy the full set of TP2 conditions. Nevertheless, Bondar (1988) observed
that the program formulated by Perlman and Olkin (1980) will remain
viable if, for certain functions k(L, L) which are symmetric in l1,..., lp
and also symmetric in l1,..., lp, the function k(L, L) f(L, L) is TP2 in each
pair (li, lj), 1 [ i ] j [ p and in each pair (li, lj), 1 [ i, j [ p, i.e., if
k(L, L) f(L, L) satisfies the full set of pairwise TP2 conditions. In the case
of Gaussian random vectors X1,..., Xn ¥ Rp, which is the case of primary
interest to statisticians, we have not been able to determine any function k
for which the full class of TP2 conditions are valid.

In the case of mutually independent, complex random vectors
X1,..., Xn ¥ Cp having complex normal distributions with a common posi-
tive definite Hermitian covariance matrix S̃, we form the random matrix
X=[X1,..., Xn] and let m=E(X). We denote by Xg=X̄Œ and mg=m̄Œ the
transpose of the complex conjugate of X and m, respectively. As before, we
assume that n \ p in order to ensure that XXg is positive-definite, almost
surely. We again denote by l1,..., lp the eigenvalues of XXg and set
L=diag(l1,..., lp); we also denote by l1,..., lp the eigenvalues of the non-
central matrix parameter mmgS̃−1, and set L=diag(l1,..., lp). Again from
results of James (1964), the probability density function of the random
matrix L is known to be of the form (1.1). In a straightforward analogy
with the results of Section 2, the corresponding function f also fails to
satisfy the full set of pairwise TP2 conditions, i.e., TP2 in each pair (li, lj),
1 [ i ] j [ p and in each pair (li, lj), 1 [ i, j [ p. Nevertheless, and this
is the major result of the present paper, we establish that for the case in
which

k(L, L)= D
1 [ i < j [ p

|(li−lj)(li−lj)|, (1.2)

the full set of pairwise TP2 conditions holds for the function
k(L, L) f(L, L).
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The proofs of these results are noteworthy, for they involve Sylvester’s
formula for compound determinants (Karlin, 1968) and the famous con-
densation formula of C. L. Dodgson [Lewis Carroll] (1866). More
generally, these techniques are applicable to all of the complex-case non-
central eigenvalue probability density functions listed by James (1964),
Section 8.

2. THE REAL CASE

A partition o=(k1,..., kn) is an n-tuple of nonnegative integers
k1,..., kn satisfying k1 \ · · · \ kn. The length of o is defined to be
|o| :=k1+·· ·+kn. For any a ¥ R, the partitional rising factorial is defined
by

[a]o :=D
n

j=1
(a− 12 (j−1))kj ,

where (a)k=a(a+1) · · · (a+k−1), k=0, 1, 2,..., is the classical rising
factorial.

Corresponding to each partition o is a zonal polynomial, Co(L)
(cf. Muirhead, 1982, Chapter 7). The polynomials Co(L) have a rich theory
and satisfy many remarkable properties; in particular, Co(L) is homoge-
neous of degree |o| in L and is positive if L is positive-definite. It suffices
for our purposes to note that for the case in which the partition o is of
length no more than two, the zonal polynomials Co(L) are given explicitly
as follows (cf. Muirhead, 1982, p. 232 ff.). Define the monomial symmetric
functions

M(2)(L)=tr (L2)=C
p

j=1
l2j

and

M(1, 1)(L)= C
1 [ i < j [ p

lilj=
1
2 [(tr L)

2− tr (L2)];

then the zonal polynomials of degree up to two are

Co(L)=˛
1, o=(0)
tr(L), o=(1)
M(2)(L)+

2
3M(1, 1)(L), o=(2)

4
3M(1, 1)(L), o=(1, 1)

(2.1)
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For nonnegative integers r and s, numerator parameters a1,..., ar ¥ C
and denominator parameters b1,..., bs ¥ C, the generalized hypergeometric
function, rFs, of two matrix arguments is defined by the zonal polynomial
expansion

rFs(a1,..., ar; b1,..., bs; L, L)=C
.

k=0
C
|o|=k

[a1]o · · · [ar]o
[b1]o · · · [bs]o

Co(L) Co(L)
k! Co(Ip)

(2.2)

where Ip denotes the p×p identity matrix and b1,..., bs are such that, for all
partitions o, [bj]o ] 0 for all j=1,..., s.

We refer to Muirhead (1982) or Gross and Richards (1987) for the
general theory of these generalized hypergeometric functions. For the case
in which r=0 and s=1, (2.2) reduces to

0F1(b; L, L)=C
.

k=0
C
|o|=k

1
[b]o

Co(L) Co(L)
k! Co(Ip)

, (2.3)

an everywhere convergent series.
Suppose that X=[X1,..., Xn] is a p×n random matrix whose

columns are mutually independent, Gaussian random vectors with
common covariance matrix S. Then, with the notation in (1.1), we have
f1(L)=exp(−tr L/2), f(L, L)=0F1(n/2; L, L), and

f0(L)=k(p, n) D
p

j=1
l (n−p−1)/2i exp(−li/2) D

1 [ i < j [ p
(li−lj)+,

where t+ denotes the positive part of t and k(p, n) is a normalizing con-
stant such that f0 is itself a probability density function; cf. Perlman and
Olkin (1980), Eq. (3.1).

Let us also recall (cf. Karlin, 1968) that a nonnegative function
K: R2Q R is totally positive of order p (TPp) if, for all u1 > · · · > up and
v1 > · · · > vp, the r×r determinant

det(K(ui, vj))

is nonnegative for all r=1,..., p. For the case in which the function K is
sufficiently smooth and strictly positive, it is well-known that the TP2
property is equivalent to the inequality

“
2

“u “v
log K(u, v) \ 0

for all u, v.
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Now we consider the TP2 properties of the function f(L, L). Because
the variables l1,..., lp are nonnegative and l1,..., lp are positive (almost
surely), we have Co(L) \ 0 and Co(L) \ 0, almost surely, for all o. Then
f(L, L) > 0 almost everywhere, so its TP2 properties may be determined by
studying the sign of the function

“
2

“l1“l2
log 0F1(n/2; L, L). (2.4)

We shall use the zonal polynomial expansion (2.3) to prove that this partial
derivative is negative in a neighborhood of L=0 when L is sufficiently
large.

Using the zonal polynomial expansion in (2.3), we obtain

0F1(n/2; L, L)=C
2

k=0
C
|o|=k

Co(L) Co(L)
k! [n/2]o Co(Ip)

+O(L3)

=1+
2
np
(tr L)(tr L)+

6
np(n+2)(p+2)

C(2)(L) C(2)(L)

+
3

np(n−1)(p−1)
C(1, 1)(L) C(1, 1)(L)+O(L3).

On applying (2.1) to express each Co(L) in terms of the Mo(L), and
differentiating with respect to l1 and l2, we obtain

“

“lj
0F1(n/2; L, L)

=
2
np
tr L+

4
np(n+2)(p+2)

(2lj+tr L) C(2)(L)

+
4

np(n−1)(p−1)
(−lj+tr L) C(1, 1)(L)+O(L2), (2.5)

for j=1, 2, and

“
2

“l1 “l2
0F1(n/2; L, L)=

4
np(n+2)(p+2)

C(2)(L)

+
4

np(n−1)(p−1)
C(1, 1)(L)+O(L). (2.6)
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Define

G(L, L) :=0F1(n/2; L, L)
“
2

“l1 “l2
0F1(n/2; L, L)

−
“

“l1
0F1(n/2; L, L) ·

“

“l2
0F1(n/2; L, L).

Clearly,

“
2

“l1 “l2
log 0F1(n/2; L, L)=

G(L, L)
[0F1(n/2; L, L)]2

,

and since 0F1(n/2; L, L)Q 1 as LQ 0 we then have

lim
LQ 0

“
2

“l1 “l2
log 0F1(n/2; L, L)=lim

LQ 0
G(L, L).

By straightforward algebraic computations using (2.5) and (2.6) we obtain

G(L, L)=
4

np(n+2)(p+2)
C(2)(L)

+
4

np(n−1)(p−1)
C(1, 1)(L)−

4
n2p2

(tr L)2+O(L).

Again applying (2.1) to express each Co(L) in terms of the Mo(L), we
obtain

G(L, L)=−
8(n+p+2)

n2p2(n+2)(p+2)
M(2)(L)

+
16[n(n+p+1)+(p−1)(p+2)]

n2p2(n+2)(p−1)(p+2)
M(1, 1)(L)+O(L).

Therefore

lim
LQ 0

“
2

“l1 “l2
log 0F1(n/2; L, L)=lim

LQ 0
G(L, L)

=−a1 C
p

j=1
l2j+a2 C

1 [ i < j [ p
lilj
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with constants aj > 0, j=1, 2. For fixed l2,..., lp, the right-hand side of
this last equation is a quadratic polynomial in l1 in which the coefficient of
l21 is negative. Hence, for fixed l2,..., lp, this polynomial attains negative
values for sufficiently large values of l1.

In conclusion,

“
2

“l1 “l2
log 0F1(n/2; L, L) < 0

for sufficiently small L and sufficiently large L.
To conclude this section, we note that the arguments utilized above

may be applied to any generalized hypergeometric function rFs of two
matrix arguments; in short, these functions do not generally satisfy pairwise
TP2 properties.

3. THE COMPLEX CASE

We now consider the complex analog of the problems studied in the
previous section. We suppose now that we begin with mutually indepen-
dent, complex random vectors X1,..., Xn having complex Gaussian distri-
butions (Goodman, 1963). As before, we assume that the vectors X1,..., Xn
have a common positive-definite Hermitian covariance matrix S̃. After
forming the n×p matrix X=[X12,..., Xn], we wish to study the total
positivity properties of l1,..., lp, the eigenvalues of XXg. Let m̃ :=E(X),
and let L denote the diagonal matrix whose diagonal entries are the eigen-
values of the noncentrality parameter matrix m̃m̃gS̃−1. By the results of
James (1964), Eq. (102), it follows that the probability density function of
L is of the form (1.1) where f1(L)=exp(−tr L), and

f0(L)=k(p, n) D
p

j=1
ln−pi exp(−li) D

1 [ i < j [ p
(li−lj)2

with k(p, n) a normalizing constant. Moreover, we have f(L, L)=
0F̃1(n; L, L) where 0F̃1 is a generalized hypergeometric function of two
Hermitian matrix arguments.

Analogous to (2.3), there is an expansion for 0F̃1 in terms of the
complex zonal polynomials, cf. James (1964), Eq. (85). First, for each par-
tition o=(k1,..., kp), the partitional rising factorial is now defined as

[a]o :=D
n

j=1
(a−j+1)kj .
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Next, for nonnegative integers r and s, numerator parameters a1,..., ar ¥ C
and denominator parameters b1,..., bs ¥ C, the generalized hypergeometric
function, rF̃s, of two Hermitian matrix arguments is defined by the zonal
polynomial expansion

rF̃s(a1,..., ar; b1,..., bs; L, L)=C
.

k=0
C
|o|=k

[a1]o · · · [ar]o
[b1]o · · · [bs]o

C̃o(L) C̃o(L)
k! C̃o(Ip)

, (3.1)

where C̃o is the complex zonal polynomial; cf. James (1964).
Using explicit formulas for the low-degree complex zonal polynomials

and following the arguments of Section 2, it is straightforward to establish
that

“
2

“l1 “l2
log 0F̃1(n; L, L) < 0

for sufficiently small L and sufficiently large L. Therefore, the probability
density function f also generally fails to satisfy the pairwise TP2 properties.

Nevertheless, motivated by comments of Bondar (1988), we now
establish the full class of pairwise TP2 properties for a modified form of the
function f. We first prove the following result.

Theorem 3.1. For p \ 1, a > p−1, l1 > · · · > lp > 0 and l1 > · · ·
> lp > 0,

“
2

“l1 “l2
log 5 D

1 [ i < j [ p
(li−lj)(li−lj) · 0F̃1(a; L, L)6 \ 0. (3.2)

The proof of this result rests on an explicit determinantal formula for
0F̃1(a; L, L) in terms of the classical, scalar-valued, generalized hyper-
geometric functions, and on a consequence of Sylvester’s formula for
compound determinants. To begin, we state the following result.

Theorem 3.2 (Gross and Richards, 1989). Suppose that for each
i=1,..., s, bi−j+1 is not a non-positive integer for any j=1,..., p. Then

rF̃s(a1,..., ar; b1,..., bs; L, L)

=cr, s
det(rFs(a1−p+1,..., ar−p+1; b1−p+1,..., bs−p+1; lilj))

<1 [ i < j [ p (li−lj)(li−lj)
(3.3)

where cr, s is a positive constant.
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Note that the rFs functions in the determinant on the right-hand side
of (3.3) are the classical scalar-valued generalized hypergeometric func-
tions. The explicit formula for the constant cr, s is given by Gross and
Richards (1989); however, its value is not needed here.

Assume that l1 > · · · > lp. For the rest of the paper, we will use the
notation

K(l, l)=0F1(a−p+1; ll),

l, l ¥ R; however, it will be clear from the context that K generally can be
chosen as an arbitrary totally positive function of suitable order. By
Theorem 3.2,

“
2

“l1 “l2
log[(l1−l2)(l1−l2) · 0F1(a; L, L)]

=
“
2

“l1 “l2
log 5 D

1 [ i < j [ p
(li−lj)(li−lj) · 0F1(a; L, L)6

=
“
2

“l1 “l2
log det(K(li, lj)).

Let us define

G1(L, L) :=[det(K(li, lj))]2
“
2

“l1 “l2
log det(K(li, lj))

= det(K(li, lj)) ·
“
2

“l1 “l2
det(K(li, lj))

−
“

“l1
det(K(li, lj)) ·

“

“l2
det(K(li, lj)). (3.4)

We recall a ‘‘generalized relation of second-order determinants,’’ given
by Karlin (1968), p. 7, Eq. (0.16): For p-dimensional vectors

a=R
a1
a2
x

ap

S, b=R
b1
b2
x

bp

S, f(1)=R
f(1)1
f(1)2
x

f(1)p

S, f(2)=R
f(2)1
f(2)2
x

f(2)p

S,..., f(p−2)=R
f(p−2)1

f(p−2)2

x

f(p−2)p

S,
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define the determinant

D(a, b, f (1),..., f (p−2))= :
a1 b1 f (1)1 · · · f (p−2)1

a2 b2 f (1)2 · · · f (p−2)2

x x x · · · x

ap bp f (1)p · · · f (p−2)p

: .
By an application of Sylvester’s formula for compound determinants,
Karlin (loc. cit.) proves that for any a, b, c, d ¥ Rp,

:D(a, c, f
(1),..., f (p−2)) D(a, d, f (1),..., f (p−2))

D(b, c, f (1),..., f (p−2)) D(b, d, f (1),..., f (p−2))
:

=D(a, b, f (1),..., f (p−2)) D(c, d, f (1),..., f (p−2)). (3.5)

We now set

a=R
K(l1, l1)
K(l2, l1)

x

K(lp, l1)

S , b=R
“

“l1
K(l1, l1)

“

“l1
K(l2, l1)

x
“

“l1
K(lp, l1)

S ,

c=R
K(l1, l2)
K(l2, l2)

x

K(lp, l2)

S , d=R
“

“l2
K(l1, l2)

“

“l2
K(l2, l2)

x
“

“l2
(lp, l2)

S ,
and, for j=1,..., p−2, set

f (j)=R
K(l1, lj+2)

K(l2, lj+2)

x

K(lp, lj+2)

S .

With these substitutions, the right-hand side of (3.4) is precisely the deter-
minant on the left-hand side of (3.5). Therefore by (3.5), we have

G1(L, L)=D(a, b, f (1),..., f (p−2)) D(c, d, f (1),..., f (p−2)).
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Now

D(a, b, f (1),..., f (p−2)) — :
K(l1, l1)

“

“l1
K(l1, l1) K(l1, l3) · · · K(l1, lp)

K(l2, l1)
“

“l1
K(l2, l1) K(l2, l3) · · · K(l2, lp)

x x x · · · x

K(lp, l1)
“

“l1
K(lp, l1) K(lp, l3) · · · K(lp, lp)

:
(3.6)

and

D(c, d, f (1),..., f (p−2)) — :
K(l1, l2)

“

“l2
K(l1, l2) K(l1, l3) · · · K(l1, lp)

K(l2, l2)
“

“l2
K(l2, l2) K(l2, l3) · · · K(l2, lp)

x x x · · · x

K(lp, l2)
“

“l2
K(lp, l2) K(lp, l3) · · · K(lp, lp)

: .
(3.7)

By appeal to the theory of total positivity, if the kernel K is TPp then each
of these determinants is nonnegative for l1 > · · · > lp and l1 > · · · > lp.
Indeed, the determinant (3.6) may be expressed as the limiting value,

lim
l2 Q l1

det(K(li, lj))
l1−l2

; (3.8)

since both numerator and denominator in this limit are nonnegative, it is
now clear that (3.6) is nonnegative. A similar argument applies to show
that (3.7) is also nonnegative.

In the case of the kernel K(l, l)=0F1(a−p+1, ll), l, l > 0, it is well-
known that K is TPp for a > p−1; cf. Karlin (1968), Gross and Richards
(1989). Consequently, we deduce that G1(L, L) \ 0.

We next establish the following result.

Theorem 3.3. For a > p−1, l1 > · · · > lp > 0, and l1 > · · · > lp > 0,

“
2

“l1 “l1
log 5 D

1 [ i < j [ p
(li−lj)(li−lj) · 0F1(a; L, L)6 \ 0. (3.9)

Let us define the function

G2(L, L) :=[det(K(li, lj))]2

×
“
2

“l1 “l1
log 5 D

1 [ i < j [ p
(li−lj)(li−lj) · 0F1(a; L, L)6 . (3.10)
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We seek conditions on a for which G2(L, L) \ 0 for all L, L > 0. Using the
explicit determinant formula (3.3) in Theorem 3.2, we have

G2(L, L)=det(K(li, lj)) ·
“
2

“l1 “l1
det(K(li, lj))

−
“

“l1
det(K(li, lj)) ·

“

“l1
det(K(li, lj)). (3.11)

Theorem 3.3 will be proved by an application of the famous condensa-
tion formula of C. L. Dodgson [Lewis Carroll] (1866). Dodgson’s formula,
long familiar to specialists in the theory of determinants (Dwyer, 1951,
p. 147), has recently regained prominence due to its reappearance in
various combinatorial problems, including the remarkable alternating-sign
matrix conjecture; cf., Mills, Robbins, and Rumsey (1983), Robbins and
Rumsey (1986), Zeilberger (1997), and Bressoud and Propp (1999).

Let A=(aij) be an n×n matrix, and denote by Ar(i, j) the r×r minor
of A consisting of r consecutive rows and columns of A starting with row i
and column j. Then Dodgson’s condensation formula is that

An(1, 1) An−2(2, 2)=An−1(1, 1) An−1(2, 2)−An−1(1, 2) An−1(2, 1).

Written another way, Dodgson’s formula provides that

det(ai, j)1 [ i, j [ n ·det(ai, j)2 [ i, j [ n−1

=det(ai, j)1 [ i, j [ n−1 ·det(ai, j)2 [ i, j [ n−det(ai, j)1 [ i [ n−12 [ j [ n
·det(ai, j)2 [ i [ n1 [ j [ n−1

.

(3.12)

Theorem 3.4. Suppose that a kernel K: R2Q R is totally positive of
order p+1. For fixed l2 > · · · > lp and l2 > · · · > lp define the kernel
M: R2Q R by

M(x, y)= :
K(x, y) K(x, l2) · · · K(x, lp)
K(l2, y) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y) K(lp, l2) · · · K(lp, lp)

:. (3.13)

ThenM is TP2 on the region (l2,.)×(l2,.).
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Proof. For x1 > x2 > l2 > · · · > lp and y1 > y2 > l2 > · · · > lp,

:M(x1, y1) M(x1, y2)
M(x2, y1) M(x2, y2)

:

= : :
K(x1, y1) K(x1, l2) · · · K(x1, lp)
K(l2, y1) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp)

: :
K(x1, y2) K(x1, l2) · · · K(x1, lp)
K(l2, y2) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y2) K(lp, l2) · · · K(lp, lp)

:

:
K(x2, y1) K(x2, l2) · · · K(x2, lp)
K(l2, y1) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp)

: :
K(x2, y2) K(x2, l2) · · · K(x2, lp)
K(l2, y2) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y2) K(lp, l2) · · · K(lp, lp)

:
:.

For the three determinants M(x1, y2), M(x2, y1), and M(x2, y2), we
perform a sequence of row-column interchanges as follows: In the deter-
minant M(x1, y2), we interchange the first column in succession with all
other columns, giving us

M(x1, y2)=(−1)p−1 :
K(x1, l2) · · · K(x1, lp) K(x1, y2)
K(l2, l2) · · · K(l2, lp) K(l2, y2)

x x x x

K(lp, l2) · · · K(lp, lp) K(lp, y2)

: .
In the determinant M(x2, y1) we interchange the first row in succession
with all other rows, giving us

M(x2, y1)=(−1)p−1 :
K(l2, y1) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp)
K(x2, y1) K(x2, l2) · · · K(x2, lp)

: .
Finally, in the determinant M(x2, y2) we interchange the first column in
succession with all other columns and then we follow this by interchanging
the resulting first row in succession with all other rows. This gives us the
result

M(x2, y2)= :
K(l2, l2) · · · K(l2, lp) K(l2, y2)

x x x x

K(lp, l2) · · · K(lp, lp) K(lp, y2)
K(x2, l2) · · · K(x2, lp) K(x2, y2)

: .
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Hence we have

:M(x1, y1) M(x1, y2)
M(x2, y1) M(x2, y2)

:

= : :
K(x1, y1) K(x1, l2) · · · K(x1, lp)
K(l2, y1) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp)

: :
K(x1, l2) · · · K(x1, lp) K(x1, y2)
K(l2, l2) · · · K(l2, lp) K(l2, y2)

x x x x

K(lp, l2) · · · K(lp, lp) K(lp, y2)

:

:
K(l2, y1) K(l2, l2) · · · K(l2, lp)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp)
K(x2, y1) K(x2, l2) · · · K(x2, lp)

: :
K(l2, l2) · · · K(l2, lp) K(l2, y2)

x x x x

K(lp, l2) · · · K(lp, lp) K(lp, y2)
K(x2, l2) · · · K(x2, lp) K(x2, y2)

:
:.

A sufficiently attentive reader will have observed by now that these row-
column operations are designed to bring the four determinants into a
format for application of Dodgson’s formula. Indeed, it now follows
immediately from (3.12) that the last determinant equals

:K(l2, l2) · · · K(l2, lp)x x x

K(lp, l2) · · · K(lp, lp)

: · :
K(x1, y1) K(x1, l2) · · · K(x1, lp) K(x1, y2)
K(l2, y1) K(l2, l2) · · · K(l2, lp) K(l2, y2)

x x x x

K(lp, y1) K(lp, l2) · · · K(lp, lp) K(lp, y1)
K(x2, y1) K(x2, l2) · · · K(x2, lp) K(x2, y2)

:.
(3.14)

Since K is TPp then the first determinant in (3.14) is nonnegative. Notice
that the second determinant in (3.14) is of order p+1; we interchange its
last column in succession with columns 2,..., p and, in the resulting deter-
minant, we interchange its last row in succession with rows 2,..., p. Then
the second determinant in (3.14) equals

:
K(x1, y1) K(x1, y2) K(x1, l2) · · · K(x1, lp)
K(x2, y1) K(x2, y2) K(x2, l2) · · · K(x2, lp)
K(l2, y1) K(l2, y2) K(l2, l2) · · · K(l2, lp)

x x x x x

K(lp, y1) K(lp, y1) K(lp, l2) · · · K(lp, lp)

: .
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Noting that x1 > x2 > l2 > · · · > lp and y1 > y2 > l2 > · · · > lp then, since
K is TPp+1, it follows that this latter determinant is also nonnegative.
Therefore the functionM in (3.13) is TP2 on (l2,.)×(l2,.).

As a consequence of the preceding result, we obtain the positivity of
the function G2 in (3.10) or (3.11) as a limiting case of Theorem 3.13; this is
done by taking limits similar to what was done in (3.8).

Finally, we remark that the results of Theorems 3.1 and 3.3 clearly
extend in a straightforward manner to the generalized hypergeometric
functions rF̃s of two Hermitian matrix arguments.
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